lunes, 12 de marzo de 2012

Potencia


Universidad Santa María La Antigua

Facultad de licenciatura en
Ingeniería Industrial Adm.
Física II

Laboratorio # 9

 "Potencia"

Grupo: D13

Integrante:
Victoria Alexandra Fonseca

 9 - 737 - 143

Realizado el:
 12 de Marzo de 2012  

Entregado:
 12 de marzo de 2012

PRIMER CUATRIMESTRE

 potencia eléctrica 
es la relación de paso de energía de un flujo por unidad de tiempo; es decir, la cantidad de energía entregada o absorbida por un elemento en un tiempo determinado. La unidad en el Sistema Internacional de Unidades es el vatio (watt).
Cuando una corriente eléctrica fluye en un circuito, puede transferir energía al hacer un trabajo mecánico o termodinámico. Los dispositivos convierten la energía eléctrica de muchas maneras útiles, como calorluz (lámpara incandescente), movimiento (motor eléctrico), sonido(altavoz) o procesos químicos. La electricidad se puede producir mecánica o químicamente por la generación de energía eléctrica, o también por la transformación de la luz en las [[célula fotoeléctrica|c es el producto de la diferencia de potencial entre dichos terminales y la intensidad de corriente que pasa a través del dispositivo. Por esta razón la potencia es proporcional a la corriente y a la tensión. Esto es,
P = \frac{dw}{dt} = \frac{dw}{dq}\cdot\frac{dq}{dt} = V\cdot I\,
donde I es el valor instantáneo de la corriente y V es el valor instantáneo del voltaje. Si I se expresa en amperios y V en voltiosP estará expresada en watts (vatios). Igual definición se aplica cuando se consideran valores promedio para IV y P.
Cuando el dispositivo es una resistencia de valor R o se puede calcular la resistencia equivale.

Potencia fluctuante

Al ser la potencia fluctuante de forma senoidal, su valor medio será cero. Para entender mejor qué es la potencia fluctuante, imaginemos un circuito que sólo tuviera una potencia de este tipo. Ello sólo es posible si \phi = \pi/2 , quedando
p(t)= V.I.cos(\pi/2) + V \cdot I \cdot \cos(2 \omega t - \pi/2) = V \cdot I \cdot \cos(2 \omega t - \pi/2)
caso que corresponde a un circuito inductivo puro o capacitivo puro. Por lo tanto la potencia fluctuante es debida a un solenoide o a un condensador.Tales elementos no consumen energía sino que la almacenan en forma de campo magnético y campo eléctrico.


Componentes de la intensidad

Consideremos un circuito de C. A. en el que la corriente y la tensión tienen un desfase φ. Se define componente activa de la intensidad, Ia, a la componente de ésta que está en fase con la tensión, y componente reactiva, Ir, a la que está en cuadratura con ella. Sus valores son:

I_a = I \cdot \cos \phi \,\!
I_r = I \cdot \sin \phi \,\!
El producto de la intensidad, I, y las de sus componentes activa, Ia, y reactiva, Ir, por la tensión, V, da como resultado las potencias aparente (S), activa (P) y reactiva (Q), respectivamente:
S = I^* \cdot V \,\!

P = I \cdot V \cdot \cos \phi \,\!
Q = I \cdot V \cdot \sin \phi \,\!


Potencia aparente


Esta 
potencia aparente (S) no es realmente la "útil", salvo cuando el factor de potencia es la unidad (cos φ=1), y señala que la red de alimentación de un circuito no sólo ha de satisfacer la energía consumida por los elementos resistivos, sino que también ha de contarse con la que van a "almacenar" las bobinas y condensadores. Se mide en voltiamperios (VA), aunque para aludir a grandes cantidades de potencia aparente lo más frecuente es utilizar como unidad de medida el kilovoltiamperio (kVA), que se lee como "kavea" o "kaveas".La potencia compleja de un circuito eléctrico de corriente alterna (cuya magnitud se conoce como potencia aparente y se identifica con la letra S), es la suma (vectorial) de la potencia que disipa dicho circuito y se transforma en calor o trabajo (conocida como potencia promedio, activa o real, que se designa con la letra P y se mide en vatios (W)) y la potencia utilizada para la formación de los campos eléctrico y magnético de sus componentes, que fluctuará entre estos componentes y la fuente de energía (conocida como potencia reactiva, que se identifica con la letra Q y se mide en voltiamperios reactivos (var)). La relación entre todas las potencias aludidas esS^2 = P^2 + Q^2.
La fórmula de la potencia aparente es: S = I^* \cdot V \,\!


Potencia activa

Es la potencia que representa la capacidad de un circuito para realizar un proceso de transformación de la energía eléctrica en trabajo. Los diferentes dispositivos eléctricos existentes convierten la energía eléctrica en otras formas de energía tales como: mecánica, lumínica, térmica, química, etc. Esta potencia es, por lo tanto, la realmente consumida por los circuitos y, en consecuencia, cuando se habla de demanda eléctrica, es esta potencia la que se utiliza para determinar dicha demanda.
Se designa con la letra P y se mide en vatios -watt- (W) o kilovatios -kilowatt- (kW). De acuerdo con su expresión, la ley de Ohm y el triángulo de impedancias:
P = I \cdot V \cdot \cos \phi = I \cdot Z \cdot I \cos \phi = I^2\cdot Z \cdot \cos \phi = I^2\cdot R \,\!
Resultado que indica que la potencia activa es debida a los elementos resistivos.


Potencia reactiva

Esta potencia no tiene tampoco el carácter realmente de ser consumida y sólo aparecerá cuando existan bobinas o condensadores en los circuitos. La potencia reactiva tiene un valor medio nulo, por lo que no produce trabajo necesario. Por ello que se dice que es una potencia desvatada (no produce vatios), se mide en voltiamperios reactivos (var) y se designa con la letra Q.
A partir de su expresión,
Q = I \cdot V \cdot \sin \phi = I \cdot Z \cdot I \sin \phi = I^2\cdot Z \cdot \sin \phi = I^2\cdot X  = I^2\cdot (X _L - X _C)=S \cdot \sin \phi \,\!
Lo que reafirma en que esta potencia es debida únicamente a los elementos reactivos.
La potencia reactiva en en cargas inductivas(motores de inducción, generadores de corriente alterna, transformadores,etc), es la energía que se necesita para magnetizar el núcleo ferromagnético de dichas cargas.

jueves, 16 de febrero de 2012

circuitos electricos y diodos

Universidad Santa María La Antigua

Facultad de licenciatura en
Ingeniería Industrial Adm.
Física II

Laboratorio # 4

 "Los condensadores"

Grupo: D13

Integrante:
Victoria Alexandra Fonseca

 9 - 737 - 143

Realizado el:
 6 de febrero de 2012  

Entregado:
 12 de febrero de 2012

PRIMER CUATRIMESTRE

                                                                    Introduccion

La aplicación práctica o tecnológica de la electricidad es base y motor de multitud y variedad de máquinas y sistemas mecánicos, aparte de ser la principal fuente de energía en la ciudad, permitiendo el alumbrado o el funcionamiento de sistemas de calefacción entre otros.
                                                                   
                                                              Circuitos electricos

Es tan común la aplicación del circuito eléctrico en nuestros días que tal vez no le damos la importancia que tiene. El automóvil, la televisión, la radio, el teléfono, la aspiradora, las computadoras y videocaseteras, entre muchos y otros son aparatos que requieren para su funcionamiento, de circuitos eléctricos simples, combinados y complejos.
Pero ¿qué es un circuito eléctrico? Se denomina así el camino que recorre una corriente eléctrica. Este recorrido se inicia en una de las terminales de una pila, pasa a través de un conducto eléctrico (cable de cobre), llega a una resistencia (foco), que consume parte de la energía eléctrica; continúa después por  el conducto, llega a un interruptor y regresa a la otra terminal de la pila.
Los elementos básicos de un circuito eléctrico son: Un generador de corriente eléctrica, en este caso una pila; los conductores (cables o alambre), que llevan a corriente a una resistencia foco y posteriormente al interruptor, que es un dispositivo de control.
Todo circuito eléctrico requiere, para su funcionamiento, de una fuente de energía, en este caso, de una corriente eléctrica.
¿Qué es la corriente eléctrica? Recibe este nombre el movimiento de cargas eléctricas (electrones) a través de un conducto; es decir, que la corriente eléctrica es un flujo de electrones.
¿Qué es un interruptor o apagador? No es más que un dispositivo de control, que permite o impide el paso de la corriente eléctrica a través de un circuito, si éste está cerrado y que, cuando no lo hace, está abierto.
Existen otros dispositivos llamados fusibles, que pueden ser de diferentes tipos y capacidades. ¿Qué es un fusible? Es un dispositivo de protección tanto para ti como para el circuito eléctrico.
Sabemos que la energía eléctrica se puede transformar en energía calorífica. Hagamos una analogía, cuando hace ejercicio, tu cuerpo está en movimiento y empiezas a sudar, como consecuencia de que está sobrecalentado. Algo similar sucede con los conductores cuando circula por ellos una corriente eléctrica (movimiento de electrones) y el circuito se sobrecalienta. Esto puede ser producto de un corto circuito, que es registrado por el fusible y ocasiona que se queme o funda el listón que está dentro de el, abriendo el circuito, es decir impidiendo el paso de corriente para protegerte a ti y a la instalación.
Recuerda que cada circuito presenta Características Particulares. Obsérvalas, compáralas y obtén conclusiones sobre los circuitos eléctricos.
Los circuitos eléctricos pueden estar conectados en serie, en paralelo y de manera mixta, que es una combinación de estos dos últimos.

                                                                       ¿Què es un diodo?

Los diodos son componentes electronicos semiconductores que cumplen una función importante en los circuitos electrónicos.
Existen varios tipos de diodos que asimismo, cumplen una variedad de funciones, en esta ocasión hablaremos de los de uso más común utilizado en los circuitos electrónicos y eléctricos.

Para iniciar diremos que el primer diodo utilizado para la rectificación de señales alternas fue el de tubo, específicamente construido por Thomas Alba Edison y se llamó Efecto Edison, que contenía una placa y el filamento únicamente; posteriormente se uso el rectificador de selenio, antecesor de los que actualmente se usan y que minimizaron el tamaño y espacio, comparado con el de tubo al vacío, la diferencia es bastante grande, además del gran consumo de energía para su funcionamiento.

                                                                  Tipos de diodos

Diodo rectificador

Este diodo, como el de tubo es un rectificador, tiene una amplia cobertura de usos, aunque con diferentes tamaños y características, dependiendo de la sección y función que vaya a llevar a cabo, en esencia es, rectificar señales, ya sea eliminando el componente de radiofrecuencia, en este caso
usado como detector, o en las salidas de audio; también los vemos en las fuentes de alimentación encargados de rectificar la corriente alterna, ya se que provenga de un transformador o directamente de la red eléctrica. En la imagen a la derecha vemos un puente de diodos, estos vienen en un chip con los 4 diodos internamente, aunque pueden hacérse con 4 diodos normales.

Diodo Led
Light Emitting Diode, diodo emisor de luz, que al ser polarizado directamente emite luz, llamada incoherente en un espectro reducido, están clasificados dentro de los semiconductores y estan formados por una juntura PN. Existen en color rojo, verde, amarillo e infrarrojos; para que un led funcione necesita apenas unos 20 mA., noes el caso de las lámparas incandescentes y las neón, que se usan como pilotos en equipos variados. Los leds de alguna forma están desplazando en uso de estas lámparas, gracias a su consumo mínimo.
Los leds se pueden sin problemas conectar a cualquier voltaje, únicamente se les tiene que agregar un resistor limitador, en caso de corriente alterna es necesario agregar un diodo rectificador además del resistor. Para calcular el resistor debes de dividir el voltaje dentro de 0.02.

Diodo Zener
Si aplicamos voltajes bajos a un zener, se comportará como cualquier diodo rectificador, toda vez que el voltaje supere cierto nivel, el diodo entra en avalancha (conducción de corriente en sentido inverso) y conduce en ambas direcciones.



                                                                          Placa protoboard

Se conocen como "placas de prototipos" y son esencialmente unas placas agujereadas con conexiones internas dispuestas en hileras, de modo que forman una matriz de taladros a los que podemos directamente "pinchar" componentes y formar el circuito deseado. Como el nombre indica, se trata de montar prototipos, de forma eventual, nunca permanente, por lo que probamos y volvemos a desmontar los componentes, quedando la protoboard lista para el próximo experimento.


El protoboard o breadbord: Es una especie de tablero con orificios, en la cual se pueden insertar componentes electrónicos y cables para armar circuitos. Como su nombre lo indica, esta tableta sirve para experimentar con circuitos electrónicos, con lo que se asegura el buen funcionamiento del mismo.

Estructura del protoboard: Básicamente un protoboard se divide en tres regiones:

A) Canal central: Es la región localizada en el medio del protoboard, se utiliza para colocar los circuitos integrados.
B) Buses: Los buses se localizan en ambos extremos del protoboard, se representan por las líneas rojas (buses positivos o de voltaje) y azules (buses negativos o de tierra) y conducen de acuerdo a estas, no existe conexión física entre ellas. La fuente de poder se conecta aquí.
C) Pistas: La pistas se localizan en la parte central del protoboard, se representan y conducen según las líneas rosas.
En las placas Protoboard o breadboard se conectan en serie o paralelamente las:

                                                                  Resistencias

La resistencia eléctrica de un objeto es una medida de su oposición al paso de corriente.
Descubierta por Georg Ohm en 1827, la resistencia eléctrica tiene un parecido conceptual a la fricción en la física mecánica. La unidad de la resistencia en el Sistema Internacional de Unidades es el ohmio.

domingo, 12 de febrero de 2012

Los condensadores

Universidad Santa María La Antigua

Facultad de licenciatura en Ingeniería Industrial Adm.
Física II

Laboratorio # 4

 "Los condensadores"

Grupo: D13

Integrante:
Victoria Alexandra Fonseca

 9 - 737 - 143

Realizado el:
 6 de febrero de 2012  

Entregado:
 12 de febrero de 2012

PRIMER CUATRIMESTRE


                                                                   Introducción

 Básicamente un condensador es un dispositivo capaz de almacenar energía en forma de campo eléctrico. Está formado por dos armaduras metálicas paralelas (generalmente de aluminio) separadas por un material dieléctrico. Va a tener una serie de características tales como capacidad, tensión de trabajo, tolerancia y polaridad, que deberemos aprender a distinguir el esquema de  un condensador, con las dos láminas = placas = armaduras, y el dieléctrico entre ellas. En la versión más sencilla del condensador, no se pone nada entre las armaduras y se las deja con una cierta separación, en cuyo caso se dice que el dieléctrico es el aire.

                                                               Los condensadores

Es un componente electrónico que almacena cargas eléctricas para utilizarlas en un circuito en el momento adecuado. Está compuesto, básicamente, por un par de armaduras separadas por un material aislante denominado dieléctrico. La capacidad de un condensador consiste en almacenar mayor o menor número de cargas cuando está sometido a tensión. De hecho, todos hemos tenido un condensador en las manos multitud de veces, seguro que cada día tocamos varios y no lo sabemos. Es tan sencillo como un cable eléctrico. El cable que tocamos, son de hecho dos conductores paralelos, aislados entres sí y que cada cable interior (conductor) lleva corriente opuesta (fase y neutro, positivo y negativo). Esto es un condensador, evidentemente muy pequeño e inútil para tal propósito. Cuando vemos una placa electrónica, podemos ver varios tipos diferentes, pero es como los coches, son todos iguales, cambia el color, el material, el combustible, pero todos tienen 4 ruedas, motor de explosión y volante y frenos, distintas maneras de trabajar pero iguales en su base. Los condensadores son todos iguales, dos armaduras enfrentadas, en una hay un polo de la batería y en el otro el opuesto. Entre ellas, las armaduras no se tocan físicamente, hay aire en medio, aislante, es el dieléctico. Para conseguir un condensador de 1 Faradio. El Faradio es en honor a Michael Faraday, y se puede definir como la capacidad de un condensador al que aplicamos a las armaduras 1 voltio y estas adquieren una carga eléctrica de 1 culombio. Para construir un condensador de estos, haría falta dos placas de un metro cuadrado y que estén separadas 1 milímetro (por ejemplo), porque si se juntan más pueden saltar arcos al ser una placa positivo y la otra negativa. Entonces se pone un papel entre ambas placas y ahora podemos poner las dos placas más juntas, pero con el papel de por medio, por lo que no hay contacto eléctrico entre ambas y además no saltan arcos, al ser aislante, Ahora tenemos las mismas medidas físicas, pero la capacidad ha aumentado. ¿Porqué? pues muy sencillo, porque la capacidad de un condensador depende de la superficie de las armaduras y de la separación entre ellas; a mayor superficie, más capacidad, a menor distancia entre armaduras (placas más juntas), mayor capacidad.  A este espacio que hay entre las dos placas, las dos armadura se llama dieléctico, sea este espacio aire, papel, cerámica u otro material. Capacidad: Se mide en Faradios (F), aunque esta unidad resulta tan grande que se suelen utilizar varios de los submúltiplos, tales como microfaradios (µF=10-6 F ), nanofaradios (nF=10-9 F) y picofaradios (pF=10-12 F). Tensión de trabajo: Es la máxima tensión que puede aguantar un condensador, que depende del tipo y grososr del dieléctrico con que esté fabricado. Si se supera dicha tensión, el condensador puede perforarse (quedar cortocircuitado) y/o explotar. En este sentido hay que tener cuidado al elegir un condensador, de forma que nunca trabaje a una tensión superior a la máxima. Tolerancia: Igual que en las resistencias, se refiere al error máximo que puede existir entre la capacidad real del condensador y la capacidad indicada sobre su cuerpo. Polaridad: Los condensadores electrolíticos y en general los de capacidad superior a 1 µF tienen polaridad, eso es, que se les debe aplicar la tensión prestando atención a sus terminales positivo y negativo. Al contrario que los inferiores a 1µF, a los que se puede aplicar tensión en cualquier sentido, los que tienen polaridad pueden explotar en caso de ser ésta la incorrecta.

Funcionamiento

La carga almacenada en una de las placas es proporcional a la diferencia de potencial entre esta placa y la otra, siendo la constante de proporcionalidad la llamada capacidad o capacitancia. En el Sistema internacional de unidades se mide en Faradios (F), siendo 1 faradio la capacidad de un condensador en el que, sometidas sus armaduras a una d.d.p. de 1 voltio, éstas adquieren una carga eléctrica de 1 culombio. La capacidad de 1 faradio es mucho más grande que la de la mayoría de los condensadores, por lo que en la práctica se suele indicar la capacidad en micro- µF = 10-6, nano- nF = 10-9 o pico- pF = 10-12 -faradios. Los condensadores obtenidos a partir de supercondensadores (EDLC) son la excepción. Están hechos de carbón activado para conseguir una gran área relativa y tienen una separación molecular entre las "placas". Así se consiguen capacidades del orden de cientos o miles de faradios. Uno de estos condensadores se incorpora en el reloj Kinetic de Seiko, con una capacidad de 1/3 de Faradio, haciendo innecesaria la pila. También se está utilizando en los prototipos de automóviles eléctricos.

Carga y descarga

Al conectar un condensador en un circuito, la corriente empieza a circular por el mismo. A la vez, el condensador va acumulando carga entre sus placas. Cuando el condensador se encuentra totalmente cargado, deja de circular corriente por el circuito. Si se quita la fuente y se coloca el condensador y la resistencia en cortocircuito, la carga empieza a fluir de una de las placas del condensador a la otra a través de la resistencia, hasta que la carga es nula en las dos placas. En este caso, la corriente circulará en sentido contrario al que circulaba mientras el condensador se estaba cargando.

martes, 31 de enero de 2012

Videos de regiones equipotenciales

http://www.youtube.com/watch?v=Q2qzOCs1jjo

http://www.youtube.com/watch?v=C44voj7Gg2w

http://www.youtube.com/watch?v=DUtHWfkkdGI

http://www.youtube.com/watch?v=xzqC_lBMp9Y

http://www.youtube.com/watch?v=1F665s-N-BM

http://www.youtube.com/watch?v=KRIX5sSPpdE

http://www.youtube.com/watch?v=pYSGLCMmcKw

http://www.youtube.com/watch?v=6Wza_HHXx7s

http://www.youtube.com/watch?v=rdeJxY3j_YI

http://www.youtube.com/watch?v=pKEqKb-R0m0

Video de la comprobacion de la ley de ohm

http://www.youtube.com/watch?v=5zoqiRZNfcI

circuitos en serie y código de colore

Universidad Santa María La Antigua

Facultad de licenciatura en
Ingeniería Industrial Adm.
Física II

Laboratorio # 3

"circuitos en serie y código de colores"

Grupo:
D13

Integrante:

Victoria Alexandra Fonseca

9 - 737 - 143

Realizado el:

30 de enero de 2012
 
Entregado:
31 de enero de 2012

PRIMER CUATRIMESTRE


COMPROBACIÓN DE LA LEY DE OHM.
Introducción
Que se pretende conseguir con la realización de esta práctica es poner en evidencia la relación que hay entre la tensión aplicada a un conductor y la intensidad de la corriente que circula por él. Tomando los correspondientes datos y mediante la utilización de un gráfica determinaremos la resistencia (mirar apartado de conceptos básicos) y luego comprobaremos si los datos teóricos se corresponden con la realidad. La experiencia se realizará con distintas resistencias.
Objetivos de la práctica
El primer objetivo de esta práctica es la comprobación experimental del cumplimiento de la Ley de Ohm. Aparte de pretender familiarizarnos con dicha ley, que nos resulta muy útil a la hora de hallar magnitudes como, por ejemplo, el valor de una resistencia colocada en un circuito a partir del voltaje y la intensidad de corriente.
Otro de los objetivos es ir poco a poco conociendo el funcionamiento de aparatos y utensilios que nos veremos obligados a utilizar constantemente en el futuro de nuestra condición de ingenieros, como son el amperímetro y el voltímetro.


                                                                    Código de  colores



Para caracterizar un resistor hacen falta tres valores: resistencia eléctrica, disipación máxima y precisión o tolerancia. Estos valores se indican normalmente en el encapsulado dependiendo del tipo de éste; para el tipo de encapsulado axial, el que se observa en las fotografías, dichos valores van rotulados con un código de franjas de colores.
Estos valores se indican con un conjunto de rayas de colores sobre el cuerpo del elemento. Son tres, cuatro o cinco rayas; dejando la raya de tolerancia (normalmente plateada o dorada) a la derecha, se leen de izquierda a derecha. La última raya indica la tolerancia (precisión). De las restantes, la última es el multiplicador y las otras indican las cifras significativas del valor de la resistencia.
El valor de la resistencia eléctrica se obtiene leyendo las cifras como un número de una, dos o tres cifras; se multiplica por el multiplicador y se obtiene el resultado en Ohmios (Ω). El coeficiente de temperatura únicamente se aplica en resistencias de alta precisión o tolerancia menor del 1%.


                                                             

Como leer el valor de una resistencia

En una resistencia tenemos generalmente 4 líneas de colores, aunque podemos encontrar algunas que contenga 5 líneas (4 de colores y 1 que indica tolerancia). Vamos a tomar como ejemplo la más general, las de 4 líneas. Leemos las primeras 3 y dejamos aparte la tolerancia que es plateada (±10%) o dorada (±5%).
  • La primera línea representa el dígito de las unidades.
  • La segunda línea representa el dígito de las decenas.
  • La tercera línea representa la potencia de 10 por la cual se multiplica el número.
Por ejemplo:

  • Registramos el valor de la primera línea (verde): 5
  • Registramos el valor de la segunda línea (amarillo): 4
  • Registramos el valor de la tercera línea (rojo): 102 o 100
  • Unimos los valores de las primeras dos líneas y multiplicamos por el valor de la tercera
54 X 102 = 5400Ω o 5,4 kΩ y este es el valor de la resistencia expresada en Ohmios.

                                                                 Circuitos en serie 

Un circuito en serie es una configuración de conexión en la que los bornes o terminales de los dispositivos (generadoresresistenciascondensadoresinterruptores, entre otros.) se conectan secuencialmente. La terminal de salida de un dispositivo se conecta a la terminal de entrada del dispositivo siguiente.
Siguiendo un símil hidráulico, dos depósitos de agua se conectarán en serie si la salida del primero se conecta a la entrada del segundo. Una batería eléctrica suele estar formada por varias pilas eléctricas conectadas en serie, para alcanzar así el voltaje que se precise.



Materiales:
·         Voltímetro.
·         Amperímetro.
·         Cables.
·         Varias resistencias.
·         Panel de conexiones.
·         Fuente de alimentación.




Conceptos básicos:
Para comprobar si la ley de OHM se manifiesta en la experiencia, debemos de conocer previamente dicha ley. La ley de OHM afirma lo siguiente:
V = I x R
La V no las proporcionará la lectura del voltímetro. Se mide en voltios.
La I es la intensidad y podemos determinarla tomando la lectura del amperímetro. Se mide en amperios.
La R es la resistencia y teniendo las otras dos lecturas (V e I), podemos hallarla utilizando como base la fórmula principal.
V = I x R R = V / I
Procedimiento
En primer lugar realizamos un esquema de trabajo con el cual pudimos guiarnos en la elaboración de la práctica:
  Recopilación del material.
  Montaje: realizar el montaje de esta manera:
La resistencia ha de estar en serie con el amperímetro y en paralelo con el voltímetro.
  Realización de la práctica: Con el mando de la fuente de alimentación al mínimo voltaje posible (12 voltios ), se toman distintas medidas de potencial y de intensidad de corriente. Es importante tener en cuenta que hay que cerrar el interruptor de corriente rápidamente después de cada lectura para no dañar los multímetros.


Conclusión
A pesar de que los resultados obtenidos no concuerdan completamente con los reales ( los valores reales de las resistencias no concuerdan exactamente con los valores teóricos ) la ley de OHM se manifiesta claramente tras haber contrastado nuestros resultados con los de otros grupos. Probablemente el problema lo han ocasionado los multímetros, los cuáles debieron de haber sido utilizados con un intensidad de corriente superior a la permitida y se desajustaron.
Los resultados teóricos de los valores de las distintas resistencias han sido satisfactorios lo que nos lleva a la conclusión de la ley se cumple correctamente